a2 United States Patent

Solihin

US009047137B2

(10) Patent No.: US 9,047,137 B2
(45) Date of Patent: Jun. 2, 2015

(54) BALANCED PROCESSING USING
HETEROGENEOUS CORES

(735)

(73)

")

@
(22)

(86)

87

(65)

(1)

(52)

(58)

Inventor: Yan Solihin, Apex, NC (US)

Assignee: EMPIRE TECHNOLOGY

DEVELOPMENT LLC, Wilmington,

DE (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 142 days.

Appl. No.:
PCT Filed:

PCT No.:

§371 (),
(2), (4) Date:

PCT Pub. No.:
PCT Pub. Date:

13/642,403

Apr. 10, 2012

PCT/US2012/032886

Oct. 19, 2012

WO02013/154539

Oct. 17,2013

Prior Publication Data

US 2013/0268943 A1 Oct. 10, 2013

Int. Cl.

GO6F 9/46 (2006.01)

GO6F 9/50 (2006.01)

GO6F 1/12 (2006.01)

GO6F 1/32 (2006.01)

U.S. CL

CPC oo, GOGF 9/5088 (2013.01); GO6F 1/12

(2013.01); GO6F 1/324 (2013.01); GO6F
1/3287 (2013.01); Y02B 60/1217 (2013.01);
Y02B 60/1282 (2013.01); Y02B 60/162
(2013.01)
Field of Classification Search
CPC .o

................ GOGF 1/12; GOGF 9/5088

USPC ittt 718/104, 105
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

8,336,056 Bl1* 12/2012 Gadircccovveininnn 718/104
2008/0288748 Al 11/2008 Sutardja
2009/0094481 Al 4/2009 Veraetal.
2010/0005474 Al* 1/2010 Sprangleetal. 718/104
2011/0047350 Al 2/2011 Geissler et al.

(Continued)
OTHER PUBLICATIONS

Becchi et al. “Dynamic thread assignment on heterogeneous multi-
processor architectures”, 2006, Proceedings of the 3rd conference on
Computing frontiers, pp. 29-40.*

(Continued)

Primary Examiner — Emerson Puente

Assistant Examiner — Willy W Huaracha

(74) Attorney, Agent, or Firm — Moritt Hock & Hamroff
LLP; Steven S. Rubin, Esq.

(57) ABSTRACT

Technologies are generally described for a multi-processor
core and a method for transferring threads in a multi-proces-
sor core. In an example, a multi-core processor may include a
first group including a first core and a second core. A first sum
of the operating frequencies of the cores in the first group
corresponds to a first total operating frequency. The multi-
core processor may further include a second group including
athird core. A second sum of the operating frequencies of the
cores in the second group may correspond to a second total
operating frequency that is substantially the same as the first
total operating frequency. A hardware controller may be con-
figured in communication with the first, second and third
core. A memory may be configured in communication with
the hardware controller and may include an indication of at
least the first group and the second group.

20 Claims, 4 Drawing Sheets

o102
4

o

100 ., e
/ /
148
g H
os L ardware
Thread—n controller
‘ 150
134
53
] 152
Group Cores
134 108, 116, 118
154 . .
/156

108
T :r

[) |
1
I
|
I
)

[3 -
thread thread thread]~

06
1

—
el
/

Core 4f
2 '
By 1
=\
i 238 132
i V=
! i
]
]
\ .
! ;
]
]
1
)
]

104 !
‘ 10, £ 1

US 9,047,137 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2011/0088041 Al
2011/0191776 Al
2012/0042176 Al*
2013/0151879 Al*
2013/0212594 Al*
2014/0082630 Al*

4/2011 Alameleen et al.

8/2011 Boseetal.

2/2012 Kim oo 713/300
6/2013 Thomson et al. .. 713/322
8/2013 Choietal. 718/104
3/2014 Ginzburgetal. 718/105

OTHER PUBLICATIONS

Qi et al., power Management for Real-Time embedded Systems on
Block-Partitioned Multicore Platforms, Apr. 2011, retrieved on Jul.
25, 2012, retrieved from http://www.cs.utsa.edu/~dzhu/papers/
ICESSO08-qi.pdf>pgs. 1-3.

Ilic et al., CHPS: An Environment for Collaborative Execution on
Heterogeneous Desktop Systems, International Journal of Network-
ing and Computing [online], Jan. 2011, retrieved on Jul. 25, 2012,
retrieved from http://www.google.com/url?sa=t&ret=j
&q=multicore%20propcessor%?20transfer%20thread%20%22fourth
%20core%?22&source=web&cd=11&ved=0CE4QFjAAOAo&url=
http%3A%2F%2Fwww.ijnc.org%2Findex.

php%2Finjnc%2Farticle%2Fdownload%2F 16%2F 16%2F 13
&ei=nCMQUMjoNcad4qAHS1YGADA&usg=AFQjCNH2A__
pwjK5vRIDul6YkC4FMS3GSA.

Borkar, S. & Chien, A., The Future of Microprocessors, Communi-
cations of the ACM, 2011,10 pages, vol. 54.

Rangan, K., Powell, M., Wei, G., Brooks, D., Achieving uniform
performance and maximizing throughput in the presence of hetero-
geneity, International Symposium on High-Performance Computer
Architecture, 2011, pp. 3-14.

Rangan, K., Wei, G., & Brooks, D., Thread Motion: fine-grained
power management for multi-core systems, International Sympo-
sium on Computer Architecture, 2009, 12 pages.

D. Shelepov & A. Fedorova, Scheduling on Heterogeneous Multicore
Processors Using Architectural Signatures, retrieved from http://
www.ideal.ece.ufl.edu/workshops/wiosca08/paper8.pdf on Feb. 6,
2013, 9 pages.

Brooks et al., Achieving uniform performance and maximizing
throughput in the presence of heterogeneity, retrieved from http://
michael.dmpowell.net/papers/hpca2011.pdf on Feb., 6, 2013, 12
pages.

International Search Report for application with application No.
PCT/US12/32886, dated Aug. 9, 2012, 40 pages.

* cited by examiner

US 9,047,137 B2

Sheet 1 of 4

Jun. 2, 2015

U.S. Patent

L pea | [peaiy | [peoiu |
891 - -
+o - J+ oL ¥
VLl — e 70 B S 1)

8LL9LL'80L ¥EIL

sa109) dnolo
~ 7
S 7/
]
Gl ﬁHu//
gl
/ \\
Zel oSl
lg|onuod | 4 T—Pe3yL
alempleH SO
\ B¥l
vi\ @3\ |—\ m_H_
001
201

U.S. Patent Jun. 2, 2015 Sheet 2 of 4 US 9,047,137 B2

S2

Receive an instruction to process a first thread, a second thread, a third thread, and a fourth
\ thread by a hardware controller

S4 VL

\ Transfer by the hardware controller, the first thread to a first core, wherein the first core is
arranged in communication with a first cache

'

S6 \ Transfer, by the hardware controller, the second thread to a second core, wherein the
second core is arranged in communication with a second cache
S8 ¢
\ Transfer, by the hardware controller, the third thread to a third core
S10
\ Transfer, by the hardware controller, the fourth thread to a fourth core
S12
N Wait, by the hardware controller, a first period of time
814\ After the first period of time has passed,
send, by the hardware controller, the first thread to the second core and
send, by the hardware controller, the second thread to the first core

'

Wait, by the hardware controller, a second period of time

S18

\ After the second period of time has passed,
send, by the hardware controller, the third thread to the fourth core; and
send, by the hardware controller, the fourth thread to the third core

S16

Fig. 2

US 9,047,137 B2

Sheet 3 of 4

Jun. 2, 2015

U.S. Patent

r—————— - - === = - r-——-—-———— -

_ wnipaw _ _ wnipaw " _ wnipaw _
SUOIEDIUNWILIOD e s|0epiodal Y ___

| Sowewnuwey O, MUY ggey | oweeee einduodys

'2109 Iy} 8y} 0} pealy) Yno} 8y} ‘Ia|jonuocd alempley auy Ag ‘Bullisjsuel) o) SUOIIONASU| 8J0W JO 8UQ

10 8109 ULINo4 8U} 0} pESIY} PJIY 3} 18[|0.BU0D alempley ay) AQ ‘Bulusisuel) 1o} SUOIoNsUl 840w 4o sUQ
‘passed sey awl 40 poliad pucoss sy Jeye
‘s 4o poliad puooas B ‘Is||osjuoo alempley sy} Ag ‘Buijiem 1o} SUO[ONASUI 8J0W 10 8UQD

{8400 }S41} ®Y) O} pE8IY} PUOIaS By} ‘18]|0.4uod alempley syl Aq ‘Bulusisuel) Jo) SUOIIONJISUl 810W IO 8UQ

10 {8102 puUo2as sy} 0) peaJy} ISl AU} ‘18]|0U0D atempiey auy) Aq ‘Bulliajsurl) 10} sUOIoNISUl 8J0W 1o auQ
‘passed sey awi} jo pouad sl ay3 Jaye
‘awn Jo pouad isiiy e “Ug|louod alempley ay) Ag ‘Buijiem 1o suoiongsul alow 1o auQ

10 ‘oules ay) Ajleijueisgns aJe SWINS puodas pue sl auy)
10 ‘“Aousnbaly Buijesado |20} puooes e 0} spuodsa.lod s2100 Ulnoy puUe pliy) ay) jo saiouanbaly Bunelado

29U} JO Wns puooas e pue ‘sapuanbaly Bunelado aajoadsal ypm ajelado 0} painbiyuoo ale $2100 Yunos pue pliyl auy)
1o ‘Aousnbauy Bunessdo |e)0} sl B 0} spuodsalloo $8100 pUoDss pue isllj 8y} Jo sepusnbaly bunelsdo

8y} Jo WNs }sai e pue ‘sapuanbaly Buielado ealoadsal yym ayelado o} palnbijuod ale $8100 puoIBS pue ISl By}
10 {s8109 Jayjo

By} JO aUO Jsea| Je WoJy Jualayip Aousnbauy Buielado ue sey $8400 YHNO4 pue Py} ‘puodas ‘Isiij 8y} JO aUo Jses) e
aloym
8400 UIno} B 0) praIy} YuNo} auy) ‘4a||0jucd alempley ay) Aq ‘Bulliaisuel) 104 sUolONASUl 10w 10 3UQD
10 ‘2109 pdIy) B 0} peaJy) Py} ay) La|jouod arempley ayy Aq ‘Bulliaisued) 10} SUOIONISUL aloW 1o auQ
10 {2109 pUOD3S B 0} PBIY} PUCDSS 3l ‘1a]|0)uod alempley 2y} Aq ‘Builsjsue.) 1o) SUORONASUI 2I0W IO BUQD
10 ‘2109 1841} B 0} peaIy) 1S1)) U ‘afjonuoo arempley syl AQ ‘Buliisisuel) 1o) sUoiongsul 210w 1o suQd
10 LJ9||0u00 alempley e AqQ peauy)
Upnoy e pue ‘peauy) paiul e ‘pealy) puooas e ‘peady} 3sdi e ssao0id 0) uoionsul e Buiaiaoal 1o} sUOIONASUl 240U 10 3UD
10 40ss8001d 2402-}|NW 8y} Ul spesJy} BuLlgisuely 1o} sUOIONASUl 810w 10 8UQ
1O auo 3se9| Iy

¥0€

‘wnipsw Buueaq eubisy 7o

19npo.ad wedboud Jaindwod vy

00¢€

(bSF) sNg FOVAYTIN| IOVHOLS

US 9,047,137 B2

(Z9p) (oey) (agH “69) (anarao “b9)
(s)3onaa J (or) (09t) (—)| ®3T108INOD (8e) 3oVHOLS (9€p) IOVHOLS
ONILNAINOD Y (s)1yod A”v HITIOHUINOD | [30v443LN|/SNg I19YAONTY-NON 219vAONTY
¥IHLO "ANOD MHOMLAN N— HH

(9%¥) S3JIA3Q NOILVIINNIWNOD

Sheet 4 of 4

Jun. 2, 2015

U.S. Patent

A (80%) SNg AYOWaN

(20%) NOILYdNSIINOD JIsvg

|
|
|
|
|
|
|
\| _ _
I |
|
| [|
| I | _
_ (957) _ (82p) Ly
| _(Hv Y3 TIOHINOD [X v1v(STHOO I _
| JOVAYILN| | A‘m_\mv SNOANIDOYILIH | _
— H ONISN DONISS3D0dd

A_H_“V A mewa 131V d W_: _ mu._._oEzMoM AMOWIN | Q3oNYIYE _ [
5 i VIV Ava50d I
_ o/l ey o o [Lrer v d -
| _:Hv ¥3TI041NOD R [1) I _

| JOV4HALNI w I SYILSIOTY i (9zv) |
I Vi3S @ : WHLIMODTY $3H00 _ I
_ N _ F19) ; SNO3INIOOYILIH _ |

L] N :

.v mv_m | ($¥) STOVIEILIN| VaIHAIET] (e} _ dsa/nd4/ny ; ONISN ONISSIV0Yd _ [
_ _ 3400 ¥ossaooud | | d3oNV Ve L
_ |) op) (ZZy) NoILvoriday _ [
(0G¥) LINN _ oV : |

| AHV ONISSIO0Nd _ JHOVD i R [
zEAa | | pmanan | | 44 |
| (zsp) oany [: WILSAS ONILYHIHO I _
Aan (s)Ldod [dsason/an . I _
| W (8y) LINN _ (F0F) goss3008d “ |
Anv ONISSAD0Ud | _
SOIHdVHO) | i | _
_ |
|

US 9,047,137 B2

1
BALANCED PROCESSING USING
HETEROGENEOUS CORES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a 371 of International Application No.
PCT/US12/32886 filed Apr. 10, 2012, the entirety of which is
hereby incorporated by reference.

BACKGROUND

Unless otherwise indicated herein, the materials described
in this section are not prior art to the claims in this application
and are not admitted to be prior art by inclusion in this section.

In multi-core processor architectures, multiple processor
cores may be included in a single integrated circuit die or on
multiple integrated circuit dies that are arranged in a single
chip package. A thread to be processed may be sent by an
operating system to the multi-core processor. The multi-core
processor may receive the thread and use one or more cores to
process the thread.

SUMMARY

In one example, a multi-core processor is generally
described. The multi-core processor may include a first group
including a first core and a second core. Fach of the cores of
the first group may be configured to operate with a respective
operating frequency. A first sum of the operating frequencies
of the cores in the first group may correspond to a first total
operating frequency. The multi-core processor may include a
second group including a third core. Each of the cores of the
second group may be configured to operate with a respective
operating frequency. A second sum of the operating frequen-
cies of the cores in the second group may correspond to a
second total operating frequency. The first total operating
frequency and the second total operating frequency may be
substantially the same. The multi-core processor may include
ahardware controller configured in communication with each
of' the first, second and third cores. The multi-core processor
may include a memory configured in communication with the
hardware controller. The memory may include an identifier
stored therein. The identifier may be associated with at least
the first group and the second group.

In another example, a method for transferring threads in a
multi-core processor is generally described. In some
examples, the method may include receiving an instruction to
process a first thread, a second thread, a third thread, and a
fourth thread by a hardware controller. The method may
further include transferring, by the hardware controller, the
first thread to a first core. The method may further include
transferring, by the hardware controller, the second thread to
a second core. The method may further include transferring,
by the hardware controller, the third thread to a third core. The
method may further include transferring, by the hardware
controller, the fourth thread to a fourth core. At least one of the
first, second, third and fourth cores may have an operating
frequency different from at least one of the other cores. The
first and second cores may be configured to operate with
respective operating frequencies. A first sum of the operating
frequencies of the first and second cores may correspond to a
first total operating frequency. The third and fourth cores may
be configured to operate with respective operating frequen-
cies. A second sum of the operating frequencies of the third
and fourth cores may correspond to a second total operating
frequency. The first and second sums may be substantially the

10

25

40

45

2

same. The method may further include waiting, by the hard-
ware controller, a first period of time. The method may further
include, after the first period of time has passed, transferring,
by the hardware controller, the first thread to the second core.
The method may further include transferring, by the hardware
controller, the second thread to the first core. The method may
further include waiting, by the hardware controller, a second
period of time. After the second period of time has passed, the
method may further include transferring, by the hardware
controller, the third thread to the fourth core. The method may
further include transferring, by the hardware controller, the
fourth thread to the third core.

In yet another example, a method for forming a multi-core
processor is generally described. The method may include
assigning, by a processor, a first core and a second core into a
first group. The cores of the first group may be configured to
operate with a respective operating frequency. A first sum of
the operating frequencies of the first and the second cores may
correspond to a first total operating frequency. The method
may further include assigning, by the processor, a third core
into a second group. The cores of the second group may each
be configured to operate with respective operating frequen-
cies. A second sum of the operating frequencies of the cores
in the second group corresponds to a second total operating
frequency. The first total operating frequency may be substan-
tially the same as the second total operating frequency. The
method may further include storing, by the processor, an
identifier identifying the first group in a memory. The method
may further include storing, by the processor, an identifier
identifying the second group in the memory.

The foregoing summary is illustrative only and is not
intended to be in any way limiting. In addition to the illustra-
tive aspects, embodiments, and features described above, fur-
ther aspects, embodiments, and features will become appar-
ent by reference to the drawings and the following detailed
description.

BRIEF DESCRIPTION OF THE FIGURES

The foregoing and other features of this disclosure will
become more fully apparent from the following description
and appended claims, taken in conjunction with the accom-
panying drawings. Understanding that these drawings depict
only several embodiments in accordance with the disclosure
and are, therefore, not to be considered limiting of its scope,
the disclosure will be described with additional specificity
and detail through use of the accompanying drawings, in
which:

FIG. 1 illustrates an example system that can be utilized to
implement balanced processing using heterogeneous cores;

FIG. 2 depicts a flow diagram for an example process for
implementing balanced processing using heterogeneous
cores;

FIG. 3 illustrates an example computer program product
for implementing balanced processing using heterogeneous
cores; and

FIG. 4 is a block diagram illustrating an example comput-
ing device that is arranged to implement balanced processing
using heterogeneous cores;

all arranged according to at least some embodiments pre-
sented herein.

DETAILED DESCRIPTION

In the following detailed description, reference is made to
the accompanying drawings, which form a part hereof. In the
drawings, similar symbols typically identify similar compo-

US 9,047,137 B2

3

nents, unless context dictates otherwise. The illustrative
embodiments described in the detailed description, drawings,
and claims are not meant to be limiting. Other embodiments
may be utilized, and other changes may be made, without
departing from the spirit or scope of the subject matter pre-
sented herein. It will be readily understood that the aspects of
the present disclosure, as generally described herein, and
illustrated in the Figures, can be arranged, substituted, com-
bined, separated, and designed in a wide variety of different
configurations, all of which are explicitly contemplated
herein.

This disclosure is generally drawn, inter alia, to methods,
apparatus, systems, devices, and computer program products
related to implementing balanced processing using heteroge-
neous cores.

Briefly stated, technologies are generally described for a
multi-processor core and a method for transferring threads in
a multi-processor core. In an example, a multi-core processor
may include a first group including a first core and a second
core. A first sum of the operating frequencies of the cores in
the first group corresponds to a first total operating frequency.
The multi-core processor may further include a second group
including a third core. A second sum of the operating frequen-
cies of the cores in the second group may correspond to a
second total operating frequency that is substantially the
same as the first total operating frequency. A hardware con-
troller may be configured in communication with the first,
second and third core. A memory may be configured in com-
munication with the hardware controller and may include an
indication of at least the first group and the second group.

FIG. 1 illustrates an example system that can be utilized to
implement balanced processing using heterogeneous cores
arranged in accordance with at least some embodiments pre-
sented herein. An example system 100 may include a multi-
core processor 102 including cores 104, 106, 108, 110, 112,
114, 116, 118, 120, 122, 124, 126, 128, 130, and/or 132.
Multi-core processor 102 may include a hardware controller
144 that is configured in communication with the cores in
multi-core processor 102 and also configured in communica-
tion with a memory 150. In operation, one or more threads
148 of a process (or processes) may be received by an oper-
ating system 146. Operating system 146 may transfer thread
148 to multi-core processor 102 to be processed. A transfer
may include, for example, sending, moving, assigning,
scheduling, assigning a pointer and/or migrating a thread. In
some examples, hardware controller 144 may be controlled
by operating system 146. In some examples a hypervisor or
virtual machine monitor, such as software layer that sits
between hardware controller 144 and operating system 146,
may control the operations discussed herein with respect to
hardware controller 144.

Cores in multi-core processor 102 may each have a difter-
ent operating frequency. For example, each of the cores (e.g.,
core, . .. core,) may have a frequency as noted by f, f,, £ In
a simple example, each of the operating frequencies for a
group of cores may be described a multiple of a common
frequency designated as f, such as 1f, 2f, 3f, 4f, 10f, etc.
Although this example demonstrates integer values relative to
the common frequency, any frequency may be used including
fractional or floating point values relative to the common
frequency such as 0.1f, 0.2f, /4, £/2, {73, 1.5f, 2.251, 3.9f,
100.1f, etc. Generically, these frequencies can be described as
Kf, where K may be an integer or non-integer value (e.g.,
floating point or fractional).

In one example, cores 104 and 106 may be configured to
operate with an operating frequency of 4f, where fis a positive
number. In some examples these cores may be larger and/or

5

10

15

20

25

30

35

40

45

50

55

60

65

4

faster than other cores in the same system and thus may be
used to process threads of single instruction streams. The
other cores may have operating frequencies that are lower in
value when compared to cores 104, 106. For example, they
may operate at near threshold voltage. The different operating
frequencies may be selected, in some examples, such that
certain cores can provide high processing throughput while
other cores may provide lower processing throughput with
reduced power consumption or increased energy efficiency,
which may be utilized to balance energy efficiency and pro-
cessing speed. For example, cores 112, 118, 124 and 130 may
have an operating frequency off; cores 108, 120,126, 114 and
132 may have a frequency of /2; and cores 110,116,128, and
122 may have an operating frequency of /4.

At a factory, before multi-core processor 102 is shipped to
a distribution channel or an end-user consumer, or at boot
time when the processor is started and configured, cores in the
multi-core processor may be assigned into groups. In one
example illustrated in FIG. 1, four groups of cores (134, 136,
138, and 140) can be assigned to differing groups. For
example, group 134 may include cores 108, 116 and 118;
group 136 may include cores 110, 112 and 120; group 140
may include cores 124, 126 and 128; group 138 may include
cores 114, 122 and 130; and core 132 may be in its own fifth
group.

A user oraprocessor 142 may determine to assign the cores
into different groups such as based on a scheduling/assign-
ment criteria. In some examples, instructions 156 are stored in
a memory 154, where memory 154 is arranged in communi-
cation with processor 142 such that instructions 156 can be
executed by processor 142 to effect assignment of cores into
different groups. In some examples, cores may be assigned
into groups so that a sum of the operating frequencies of the
cores in at least some of the groups corresponds to the same
sum operating frequency plus or minus 10%. In this way,
substantially homogeneous groups of heterogeneous cores
may be assigned. Threads may then be sent to these substan-
tially homogenous groups as discussed herein.

In the example illustrated in FIG. 1, groups 134, 136, 138
and 140 each have an approximate total operating frequency
of'about 1.75f (i.e., there may be some nominal variations in
the individual operating frequencies due to error tolerances,
temperature, voltages and other factors). Core 132 may
remain separate from the other groups and may be used for
processing a sequential thread. As discussed in more detail
below, each group may operate at approximately one-third
(¥5) of the total operating frequency (e.g., 1.751/3 or 0.58330
which is also approximately equal to core 132 operating at
about one-half (12) of frequency f. A table 152 may be stored
in memory 150 for use by hardware controller 144 and may
include indications of the cores in each group.

Processor 142 may also be configured to assign cores into
groups based, at least in part, on a physical distance between
cores. For example, processor 142 may consider all possible
groups of cores, determine a physical distance between each
of'these groups, determine a total sum of these distances, and
assign cores to groups so as to achieve the lowest total sum
distance. Instructions 153 may be adapted to send threads to
be processed by multi-core processor 102 in a variety of ways
depending on a desired goal or criteria such as load balancing,
core temperature control, processing threads at a highest pro-
cessing speed, etc. Operating system 146 may be configured
to send a core assignment request to hardware controller 144,
where the core assignment request requests a core(s) to
handle processing of thread(s) 148. Hardware controller 144
may then be configured to transfer a thread(s) 148 to a physi-
cal core(s) based on instructions 153 stored in memory 150.

US 9,047,137 B2

5

Example goals or performance criteria may be varied
depending on the specific application or applications. For
example, a sequential application may include a single
sequential thread. A parallel application may include multiple
sequential threads that run in parallel with respect to one
another. In some examples, the goal may be to achieve fastest
performance for sequential applications, and instructions 153
may be written to indicate that hardware controller 144
should transfer received threads 148 to the fastest core in all
groups. In other examples, the goal may be to achieve fastest
performance for a parallel application, and instructions 153
may be written to indicate that hardware controller 144
should transfer received threads 148 to the fastest core in all
groups. In the example, cores 118, 112, 124 and 130 may be
the fastest cores in their respective groups. Transferring
threads to the fastest core in all groups may be conceptually
thought of as horizontal spreading in that the fastest cores in
groups may be used. Similarly, a vertical type spreading may
be used where all cores in a first group are used before cores
in a second group. This vertical spreading may help in load
balancing among threads that belong to a parallel application.

Processor 142 may be configured to select between either
horizontal or vertical type spreading, if the goal is to achieve
load balance among threads of a parallel application. The
selection of spreading type may be determined based on the
number (N) of threads 148 and/or the number (G) of groups of
cores. In an example, N-threads may be assigned to a respec-
tive one of G-groups of cores, where each group has a number
(M) of cores. Insome examples, if N is equally divisible by G,
then horizontal spreading may be used. In other examples, if
N is divisible by M but N is not divisible by G, then vertical
spreading may be used. In some additional examples, if N is
not divisible by M and N is also not divisible by G, then
controller 144 may calculate a sum of the aggregate frequen-
cies of all of the cores that are considered for horizontal
spreading’s thread assignment in each group and calculate a
difference between the maximum group aggregate frequency
and a minimum group aggregate frequency, and assign that
difference to a variable X. If the groups all have the same
aggregate frequency, X should equal 0. Controller 144 may
also calculate a sum of the aggregate frequencies of all of the
cores that are considered for vertical spreading’s thread
assignment in each group and calculate a difference between
the maximum group aggregate frequency and a minimum
group aggregate frequency, and assign that difference to a
variable Y. If the groups all have the same aggregate fre-
quency, Y should equal 0. In the example if X<Y then hori-
zontal spreading may be used. Otherwise, vertical spreading
may be used.

After threads are transferred by controller 144 to cores,
controller 144 may be configured to rotate threads among
cores that are assigned threads in a group. For example,
focusing on group 140 as illustrative, controller 144 may be
configured to transfer three threads 164, 166, 168 to respec-
tive cores 124, 126, 128 in group 140. Core 124 may be
arranged in communication with a cache 158. Core 126 may
arranged be in communication with a cache 160. Core 128
may be arranged in communication with a cache 162. Caches
158, 160 and 162 may be, for example, L1 or L2 caches and
may include other instructions or tables used by cores.

After a period of time, controller 144 may be configured to
rotate threads 164, 166 and 168 among cores 124, 126, 128
and respective caches 158, 160, 162 even before threads 164,
166 and 168 have completed processing. For example, mul-
tiplexers 170, 172, and 174 can be configured to selectively
couple cores and multiple different caches to process threads.

10

15

20

25

30

35

40

45

50

55

60

65

6

In one example, threads 164, 166, 168 may be selectively
rotated among cores in group 140 at a particular interval, so
that each thread may be processed at substantially the same
time and at a speed defined by the average operating fre-
quency of the three cores.

In one example, data for thread 164 processed by core 124
and stored in cache 158 may be subsequently rotated and used
by another core. For example, data in cache 158 may be
rotated and used by core 126 to process thread 164 because
multiplexer 170 may be adapted to selectively couple core
126 with cache 158 according to a particular rotation interval.
This described rotation interval may be utilized to avoid a
result where one particular thread may be processed quicker
than other threads because the particular thread may have
been assigned to the fastest core for processing. The particu-
lar rotation interval may be assigned to hardware controller
144 by instructions 153. The rotation interval may calculated
to be roughly one or two magnitudes larger than the time
needed to fill an L1 cache of a core—in some examples this
may be a few hundred to a few tens of thousands cycles. The
rotation interval may be one or two magnitudes smaller than
the size of a parallel computation task. The intersection of
these two rotation interval factors (i.e. one or two magnitudes
larger than the time that may be needed to fillan .1 cache, and
one or two magnitudes smaller than a parallel computation
task size) may define a rotation interval in a range of about one
microsecond to about 1 millisecond.

In some examples, by rotating through the use of the vari-
ous cores, operating system 146 may experience an approxi-
mately uniform core speed over a sufficiently long time inter-
val. This approximately uniform core speed may be achieved
despite the fact that the underlying cores are heterogeneous.
Thus, by rotating through the various heterogeneous cores,
substantially balanced processing of threads may be
achieved. Threads may be written assuming substantially the
same core size if desired and need not be tailored to different
operating frequencies of cores.

Some threads may inherently require more processing time
than other threads. Moreover, even with rotation of cores, one
thread may finish processing in one core in a group before
other cores in the same group have completed processing. The
thread that finished first may sit idle in a wait or monitor state
and effectively waste resources of the respective core. To
further balance processing of threads, an idle thread may be
swapped to a slower processing core in a group.

Continuing with focus on group 140, in an example, hard-
ware controller 144 may be configured to receive a message
that core 124 has finished processing thread 164 and that
thread 164 is now waiting in a synchronization construct. For
example, the thread may be executing instructions of a syn-
chronization construct, but may not make any progress in
computation because the thread is waiting inside the con-
struct until other threads arrive. For example, thread 164 may
execute an instruction such as MONITOR or MWAIT to
indicate that thread 164 has completed processing and is
waiting in a synchronization construct. In response to this
message (i.e., processing is completed), controller 144 may
be configured to transfer thread 164 to core 128 and also
transfer thread 168 from core 128 to core 124. In response to
the message that thread 168 in core 128 has completed pro-
cessing, controller 144 may also determine to take core 128
out of rotation, as shown in gray shading, so that the next time
threads rotate in group 140, only cores 124 and 126 rotate and
core 128 keeps thread 164 in the idle state. The rotation of
threads may continue until all threads complete their process-
ing. In this way, threads that are still processing may be
processed on cores in a group with the highest operating

US 9,047,137 B2

7

frequencies. The above described thread rotation may
improve performance of programs with an inherent load
imbalance among threads.

Among other possible benefits, a system arranged in accor-
dance with the present disclosure may help increase an over-
all performance that instructions may be processed in a het-
erogeneous multi-core architecture. For example,
instructions may be processed by the heterogeneous architec-
ture even though the instructions were coded under the
assumption that all cores on a chip have the same operating
frequency, and even when the actual cores have different
operating frequencies. With the presently disclosed tech-
niques, the operating system need not be made aware of
different operating frequencies of underlying cores in the
heterogeneous architecture and thus be less concerned with
scheduling.

Homogeneous groups of cores may be formed out of het-
erogeneous cores. By rotating threads among the various
cores within a group of heterogeneous cores, threads associ-
ated to the group of cores can be processed at substantially the
same rate. By rotating the communication of caches with each
core, the overhead involved in migrating threads among cores
may also be reduced. Threads requiring different processing
times may, in combination, be processed quicker and less
energy may be wasted in cores with threads waiting idle.
Threads may be processed at a speed that is the average
operating frequency of cores in a group as opposed to the
speed of the slowest core.

FIG. 2 depicts a flow diagram for an example process for
implementing balanced processing using heterogeneous
cores arranged according to at least some embodiments pre-
sented herein. In some examples, the process in FIG. 2 could
be implemented using system 100 discussed above. An
example process may include one or more operations,
actions, or functions as illustrated by one or more of blocks
S2, S4, S6, S8, S10, S12, S14, S16 and/or S18. Although
illustrated as discrete blocks, various blocks may be divided
into additional blocks, combined into fewer blocks, or elimi-
nated, depending on the desired implementation.

Process 200 may begin at block S2, “Receive a request to
process a first thread, a second thread, a third thread, and a
fourth thread by a hardware controller”. At block S2, a hard-
ware controller may be configured to receive a request to
process a first, second, third and fourth thread. For example,
the controller may be in communication with an operating
system and may receive from the operating system one or
more requests to process the first, second third and fourth
threads such as in conjunction with executing a series of
instructions.

Processing may continue from block S2 to block S4,
“Transfer by the hardware controller, the first thread to a first
core, wherein the first core is arranged in communication with
a first cache”. At block S4, the hardware controller may be
configured to transfer the first thread to a first core to process
the instructions in the thread. The transfer may include, for
example, sending, moving, migrating, assigning scheduling,
assigning a pointer and/or migrating a thread through a data
bus to the first core. The first core may be arranged in com-
munication with a first cache.

Processing may continue from block S4 to block S6,
“Transfer, by the hardware controller, the second thread to a
second core, wherein the second core is arranged in commu-
nication with a second cache”” At block S6, the hardware
controller may be configured to transfer the second thread to
a second core to process the instructions in the thread. The
transfer may include, for example, sending, moving, migrat-
ing assigning, scheduling, assigning a pointer and/or migrat-

10

15

20

25

30

35

40

45

50

55

60

65

8

ing a thread to the second core. The second core may be
arranged in communication with a second cache.

Processing may continue from block S6 to block S8,
“Transfer, by the hardware controller, the third thread to a
third core.” At block S8, the hardware controller may transfer
the third thread to a third core to process the instructions in the
thread. The transfer include, for example, sending, moving,
migrating assigning, scheduling, assigning a pointer and/or
migrating a thread to the third core.

Processing may continue from block S8 to block S10,
“Transfer, by the hardware controller, the fourth thread to a
fourth core.” Atblock S10, the hardware controller may trans-
fer the fourth thread to a fourth core to process the instructions
in the thread. The transfer include, for example, sending,
moving, migrating assigning, scheduling, assigning a pointer
and/or migrating a thread to the third core.

At least one of the first, second, third and fourth cores may
have an operating frequency different from at least one of the
other cores. A first group may include the first and the second
cores. A first sum of the operating frequencies of the cores in
the first group may correspond to a first total operating fre-
quency. A second group may include the third and the fourth
cores. A second sum of the operating frequencies of the cores
in the second group may correspond to a second total oper-
ating frequency that is substantially the same as the first total
operating frequency.

Processing may continue from block S10 to block S12,
“Wait, by the hardware controller, a first period of time.” At
block S12, the hardware controller may be configured to wait
a first period of time. The hardware controller could be con-
figured to wait using a watchdog timer, an interrupt timer, or
any other appropriate timer mechanism.

Processing may continue from block S12 to block S14,
“After the first period of time has passed, transfer, by the
hardware controller, the first thread to the second core and
transfer, by the hardware controller, the second thread to the
first core.” At block S14, after the first period of time has
passed, the hardware controller may be configured to transfer
the first thread to the second core and transfer the second
thread to the first core. This may rotate processing of threads
among cores while maintaining data stored in respective
caches.

Processing may continue from block S14 to block S16,
“Wait, by the hardware controller, a second period of time.”
At block S16, the hardware controller may be configured to
wait a second period of time.

Processing may continue from block S16 to block S18,
“After the second period of time has passed, transfer, by the
hardware controller, the third thread to the fourth core; and
transfer, by the hardware controller, the fourth thread to the
third core.” At block S18, after the second period of time, the
hardware controller may be configured to transfer the third
thread to the fourth core and transfer the fourth thread to the
third core.

FIG. 3 illustrates an example computer program product
300 arranged according to at least some embodiments pre-
sented herein. Program product 300 may include a signal
bearing medium 302. Signal bearing medium 302 may
include one or more instructions 304 that, when executed by,
for example, a processor, may provide the functionality
described above with respect to FIGS. 1-2. Thus, for example,
referring to system 100, hardware controller 144 may under-
take one or more of the blocks shown in FIG. 3 in response to
instructions 304 conveyed to the system 100 by medium 302.

In some implementations, signal bearing medium 302 may
encompass a computer-readable medium 306, such as, but not
limited to, a hard disk drive, a Compact Disc (CD), a Digital

US 9,047,137 B2

9

Video Disk (DVD), a digital tape, memory, etc. In some
implementations, signal bearing medium 302 may encom-
pass a recordable medium 308, such as, but not limited to,
memory, read/write (R/W) CDs, R/W DVDs, etc. In some
implementations, signal bearing medium 302 may encom-
pass a communications medium 310, such as, but not limited
to, a digital and/or an analog communication medium (e.g., a
fiber optic cable, a waveguide, a wired communications link,
a wireless communication link, etc.). Thus, for example, pro-
gram product 300 may be conveyed to one or more modules
of the system 100 by an RF signal bearing medium 302,
where the signal bearing medium 302 is conveyed by a wire-
less communications medium 310 (e.g., a wireless commu-
nications medium conforming with the IEEE 802.11 stan-
dard).

FIG. 4 is a block diagram illustrating an example comput-
ing device 400 thatis arranged to implement balance process-
ing using heterogeneous cores according to at least some
embodiments presented herein. In a very basic configuration
402, computing device 400 typically includes one or more
processors 404 and a system memory 406. A memory bus 408
may be used for communicating between processor 404 and
system memory 406.

Depending on the desired configuration, processor 404
may be of any type including but not limited to a micropro-
cessor (LP), a microcontroller (uC), a digital signal processor
(DSP), or any combination thereof. Processor 404 may
include one more levels of caching, such as a level one cache
410 and a level two cache 412, a processor core 414, and
registers 416. An example processor core 414 may include an
arithmetic logic unit (ALU), a floating point unit (FPU), a
digital signal processing core (DSP Core), a register file, a
processor pipeline, or any combination thereof. An example
memory controller 418 may also be used with processor 404,
or in some implementations memory controller 418 may be
an internal part of processor 404.

Depending on the desired configuration, system memory
406 may be of any type including but not limited to volatile
memory (such as RAM), non-volatile memory (such as
ROM, flash memory, etc.) or any combination thereof. Sys-
tem memory 406 may include an operating system 420, one
or more applications 422, and program data 424. Application
422 may include a balanced processing using heterogeneous
cores algorithm 426 that is arranged to perform the functions
as described herein including those described with respect to
system 100 of FIG. 1. Program data 424 may include bal-
anced processing using heterogeneous cores data 428 that
may be useful for balanced processing using heterogeneous
cores algorithm as is described herein. In some embodiments,
application 422 may be arranged to operate with program
data 424 on operating system 420 such that balanced process-
ing using heterogeneous cores may be provided. This
described basic configuration 402 is illustrated in FIG. 4 by
those components within the inner dashed line.

Computing device 400 may have additional features or
functionality, and additional interfaces to facilitate commu-
nications between basic configuration 402 and any required
devices and interfaces. For example, a bus/interface control-
ler 430 may be used to facilitate communications between
basic configuration 402 and one or more data storage devices
432 via a storage interface bus 434. Data storage devices 432
may be removable storage devices 436, non-removable stor-
age devices 438, or a combination thereof. Examples of
removable storage and non-removable storage devices
include magnetic disk devices such as flexible disk drives and
hard-disk drives (HDD), optical disk drives such as compact
disk (CD) drives or digital versatile disk (DVD) drives, solid

10

15

20

25

30

35

40

45

50

55

60

65

10

state drives (SSD), and tape drives to name a few. Example
computer storage media may include volatile and nonvolatile,
removable and non-removable media implemented in any
method or technology for storage of information, such as
computer readable instructions, data structures, program
modules, or other data.

System memory 406, removable storage devices 436 and
non-removable storage devices 438 are examples of com-
puter storage media. Computer storage media includes, but is
not limited to, RAM, ROM, EEPROM, flash memory or other
memory technology, CD-ROM, digital versatile disks (DVD)
or other optical storage, magnetic cassettes, magnetic tape,
magnetic disk storage or other magnetic storage devices, or
any other medium which may be used to store the desired
information and which may be accessed by computing device
400. Any such computer storage media may be part of com-
puting device 400.

Computing device 400 may also include an interface bus
440 for facilitating communication from various interface
devices (e.g., output devices 442, peripheral interfaces 444,
and communication devices 446) to basic configuration 402
via bus/interface controller 430. Example output devices 442
include a graphics processing unit 448 and an audio process-
ing unit 450, which may be configured to communicate to
various external devices such as a display or speakers via one
or more A/V ports 452. Example peripheral interfaces 444
include a serial interface controller 454 or a parallel interface
controller 456, which may be configured to communicate
with external devices such as input devices (e.g., keyboard,
mouse, pen, voice input device, touch input device, etc.) or
other peripheral devices (e.g., printer, scanner, etc.) via one or
more 1/O ports 458. An example communication device 446
includes a network controller 460, which may be arranged to
facilitate communications with one or more other computing
devices 462 over a network communication link via one or
more communication ports 464.

The network communication link may be one example of a
communication media. Communication media may typically
be embodied by computer readable instructions, data struc-
tures, program modules, or other data in a modulated data
signal, such as a carrier wave or other transport mechanism,
and may include any information delivery media. A “modu-
lated data signal” may be a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media may include wired media such
as a wired network or direct-wired connection, and wireless
media such as acoustic, radio frequency (RF), microwave,
infrared (IR) and other wireless media. The term computer
readable media as used herein may include both storage
media and communication media.

Computing device 400 may be implemented as a portion of
a small-form factor portable (or mobile) electronic device
such as a cell phone, a personal data assistant (PDA), a per-
sonal media player device, a wireless web-watch device, a
personal headset device, an application specific device, or a
hybrid device that include any of the above functions. Com-
puting device 400 may also be implemented as a personal
computer including both laptop computer and non-laptop
computer configurations.

The present disclosure is not to be limited in terms of the
particular embodiments described in this application, which
are intended as illustrations of various aspects. Many modi-
fications and variations can be made without departing from
its spirit and scope, as will be apparent to those skilled in the
art. Functionally equivalent methods and apparatuses within
the scope of the disclosure, in addition to those enumerated

US 9,047,137 B2

11

herein, will be apparent to those skilled in the art from the
foregoing descriptions. Such modifications and variations are
intended to fall within the scope of the appended claims. The
present disclosure is to be limited only by the terms of the
appended claims, along with the full scope of equivalents to
which such claims are entitled. It is to be understood that this
disclosure is not limited to particular methods, reagents, com-
pounds compositions or biological systems, which can, of
course, vary. It is also to be understood that the terminology
used herein is for the purpose of describing particular
embodiments only, and is not intended to be limiting.

With respect to the use of substantially any plural and/or
singular terms herein, those having skill in the art can trans-
late from the plural to the singular and/or from the singular to
the plural as is appropriate to the context and/or application.
The various singular/plural permutations may be expressly
set forth herein for sake of clarity.

It will be understood by those within the art that, in general,
terms used herein, and especially in the appended claims
(e.g., bodies of the appended claims) are generally intended
as “open” terms (e.g., the term “including” should be inter-
preted as “including but not limited to,” the term “having”
should be interpreted as “having at least,” the term “includes”
should be interpreted as “includes but is not limited to,” etc.).
It will be further understood by those within the art that if a
specific number of an introduced claim recitation is intended,
such an intent will be explicitly recited in the claim, and in the
absence of such recitation no such intent is present. For
example, as an aid to understanding, the following appended
claims may contain usage of the introductory phrases “at least
one” and “one or more” to introduce claim recitations. How-
ever, the use of such phrases should not be construed to imply
that the introduction of a claim recitation by the indefinite
articles “a” or “an” limits any particular claim containing
such introduced claim recitation to embodiments containing
only one such recitation, even when the same claim includes
the introductory phrases “one or more” or “at least one” and
indefinite articles such as “a” or “an” (e.g., “a” and/or “an”
should be interpreted to mean “at least one” or “one or
more”); the same holds true for the use of definite articles
used to introduce claim recitations. In addition, even if a
specific number of an introduced claim recitation is explicitly
recited, those skilled in the art will recognize that such reci-
tation should be interpreted to mean at least the recited num-
ber (e.g., the bare recitation of “two recitations,” without
other modifiers, means at least two recitations, or two or more
recitations). Furthermore, in those instances where a conven-
tion analogous to “at least one of A, B, and C, etc.” is used, in
general such a construction is intended in the sense one hav-
ing skill in the art would understand the convention (e.g., “a
system having at least one of A, B, and C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). In those instances where a con-
vention analogous to “at least one of A, B, or C, etc.” is used,
in general such a construction is intended in the sense one
having skill in the art would understand the convention (e.g.,
“a system having at least one of A, B, or C” would include but
not be limited to systems that have A alone, B alone, C alone,
A and B together, A and C together, B and C together, and/or
A, B, and C together, etc.). It will be further understood by
those within the art that virtually any disjunctive word and/or
phrase presenting two or more alternative terms, whether in
the description, claims, or drawings, should be understood to
contemplate the possibilities of including one of the terms,

10

15

20

25

30

35

40

45

50

55

60

65

12

either of the terms, or both terms. For example, the phrase “A
or B” will be understood to include the possibilities of “A” or
“B” or “A and B.”

In addition, where features or aspects of the disclosure are
described in terms of Markush groups, those skilled in the art
will recognize that the disclosure is also thereby described in
terms of any individual member or subgroup of members of
the Markush group.

As will be understood by one skilled in the art, for any and
all purposes, such as in terms of providing a written descrip-
tion, all ranges disclosed herein also encompass any and all
possible subranges and combinations of subranges thereof.
Any listed range can be easily recognized as sufficiently
describing and enabling the same range being broken down
into at least equal halves, thirds, quarters, fifths, tenths, etc. As
a non-limiting example, each range discussed herein can be
readily broken down into a lower third, middle third and
upper third, etc. As will also be understood by one skilled in
the art all language such as “up to,” “at least,” “greater than,”
“less than,” and the like include the number recited and refer
to ranges which can be subsequently broken down into sub-
ranges as discussed above. Finally, as will be understood by
one skilled in the art, a range includes each individual mem-
ber. Thus, for example, a group having 1-3 cells refers to
groups having 1, 2, or 3 cells. Similarly, a group having 1-5
cells refers to groups having 1, 2, 3, 4, or 5 cells, and so forth.

While various aspects and embodiments have been dis-
closed herein, other aspects and embodiments will be appar-
ent to those skilled in the art. The various aspects and embodi-
ments disclosed herein are for purposes of illustration and are
not intended to be limiting, with the true scope and spirit
being indicated by the following claims.

What is claimed is:
1. A multi-core processor comprising:
a first core configured to operate at a first operating fre-
quency;
a second core configured to operate at a second operating
frequency, a third core configured to operate at a third
operating frequency, at least one of the first, second, or
third operating frequencies is different from the others of
the first, second, or third operating frequencies; and
a hardware controller configured in communication with
each of the first, second, and third cores;
wherein:
a first identifier is associated with a first group that
includes the first and second cores, and a second iden-
tifier is associated with a second group that includes
the third core;
wherein:
a first sum of operating frequencies of the cores in the
first group corresponds to a first total operating fre-
quency,
a second sum of operating frequencies of the cores in the
second group corresponds to a second total operating
frequency, and wherein the first total operating fre-
quency and the second total operating frequency are
substantially same;
wherein the hardware controller is effective to:
assign a first thread to the first core, a second thread to
the second core, and a third thread to the third core;
and

after a period of time, transfer the first thread to the
second core and the second thread to the first core,
wherein the first group is effective to process the
first and second threads at a substantially same rate

US 9,047,137 B2

13

based at least in part on the transfer of the first
thread to the second core and the second thread to
the first core.

2. The multi-core processor as recited in claim 1, further

comprising:

a first cache configured in communication with the first
core; and

a second cache configured in communication with the sec-
ond core;

wherein the hardware controller is further configured to:
couple the first cache with the second core; and
couple the second cache with the first core.

3. The multi-core processor as recited in claim 1, further

comprising:

a first level 2 cache configured in communication with the
first core; and

a second level 2 cache configured in communication with
the second core;

wherein the period of time is between about 1 microsecond
and 100 microseconds, and wherein, after the period of
time has passed, the hardware controller is further effec-
tive to:
couple the first level 2 cache with the second core; and
couple the second level 2 cache with the first core.

4. The multi-core processor as recited in claim 1, further

comprising:

a first level 2 cache configured in communication with the
first core;

a second level 2 cache configured in communication with
the second core;

a first multiplexer configured in communication with the
hardware controller, the first level 2 cache, the first core,
the second level 2 cache, and the second core; and

a second multiplexer configured in communication with
the hardware controller, the first level 2 cache, the first
core, the second level 2 cache, and the second core;

wherein the period of time is between about 1 microsecond
and 100 microseconds, and wherein the hardware con-
troller is effective to:
assign the first thread to the first core through the first

multiplexer;
assign the second thread to the second core through the
second multiplexer;
after the period of time has passed, the hardware con-
troller is effective to:
transfer the first thread to the second core through the
first multiplexer;
transfer the second thread to the first core through the
second multiplexer;
couple the first level 2 cache with the second core
through the first multiplexer; and
couple the second level 2 cache with the first core
through the second multiplexer.

5. The multi-core processor as recited in claim 1, further

comprising:

a fourth core configured in communication with the hard-
ware controller; and wherein:

a third group includes the fourth core; and

the fourth core has an operating frequency substantially
equal to the first sum divided by a number of cores in the
first group.

6. The multi-core processor as recited in claim 1, wherein:

the hardware controller is configured to transfer a fourth
thread to the first core, wherein the first core has a fastest
operating frequency in the first group; and

thereafter the hardware controller is effective to transfer a
fifth thread to another core in the first group.

5

20

25

30

35

40

45

50

55

60

65

14

7. The multi-core processor as recited in claim 1, wherein

the hardware controller is further configured to:

transfer a fourth thread to the first core; and

thereafter transfer a fifth thread to the third core.

8. The multi-core processor as recited in claim 1, wherein

the hardware controller is further configured to:

transfer a fourth thread to the first core;

transfer a fifth thread to the second core; and

after the first core indicates that the first core has completed
processing the fourth thread, the hardware controller is
further effective to transfer the fourth thread to the sec-
ond core and transfer the fifth thread to the first core.

9. The multi-core processor as recited in claim 1, further

comprising:

a fourth core configured in communication with the hard-
ware controller, wherein the fourth core has an operating
frequency less than the first and second operating fre-
quencies; and

wherein:
the first group further includes the fourth core; and
the hardware controller is further effective to:

transfer a fourth thread to the first core,

transfer a fifth thread to the second core,

transfer a sixth thread to the fourth core, and

after the first core indicates that the first core has
completed processing the fourth thread, the hard-
ware controller is further effective to transfer the
fourth thread to the fourth core and transfer the
sixth thread to the first core.

10. The multi-core processor as recited in claim 1, further

comprising:

a fourth core configured to be in communication with the
hardware controller, wherein the fourth core has an oper-
ating frequency less than the first and second operating
frequencies;

wherein:

the first group further includes the fourth core; and

the hardware controller is further effective to:
transfer a fourth thread to the first core,
transfer a fifth thread to the second core,
transfer a sixth thread to the fourth core,
after the first core indicates that the first core has com-

pleted processing the fourth thread, the hardware con-

troller is further configured to:

transfer the fourth thread to the fourth core and trans-
fer the sixth thread to the first core;

wait a period of time;

transfer the sixth thread to the second core; and

transfer the fifth thread to the first core.

11. The multi-core processor as recited in claim 1, further

comprising:

a fourth core configured in communication with the hard-
ware controller, wherein the fourth core has an operating
frequency less than the first and second operating fre-
quencies;

a first cache configured in communication with the first
core; and

a second cache configured in communication with the sec-
ond core;

wherein:
the first group further includes the fourth core; and
the hardware controller is further configured to:

transfer a fourth thread to the first core,
transfer a fifth thread to the second core,
transfer a sixth thread to the fourth core, and

US 9,047,137 B2

15

after the first core indicates that the first core has
completed processing the fourth thread, the hard-
ware controller is further configured to:
transfer the fourth thread to the fourth core and

transfer the sixth thread to the first core,

wait a period of time,

transfer the sixth thread to the second core,

couple the first cache with the second core,

transfer the fifth thread to the first core, and

couple the second cache with the first core.

12. The multi-core processor as recited in claim 1, wherein
another processor is effective to determine that the first and
second cores are grouped in the first group based at least in
part on a distance between the first and second cores.

13. A method to transfer threads in a multi-core processor,
the method comprising:

receiving, by a hardware controller, an instruction to pro-

cess a first thread, a second thread, a third thread, and a
fourth thread;

transferring, by the hardware controller, the first thread to a

first core;

transferring, by the hardware controller, the second thread

to a second core;

transferring, by the hardware controller, the third thread to

a third core;

transferring, by the hardware controller, the fourth thread

to a fourth core;

wherein:

at least one of the first, second, third, and fourth cores has
an operating frequency different from at least one of
the other cores; and

the first core is configured to operate at a first operating
frequency and the second core is configured to oper-
ate at a second operating frequency, and a first sum of
the operating frequencies of'the first and second cores
corresponds to a first total operating frequency,

the third core is configured to operate at a third operating
frequency and the fourth core is configured to operate
at a fourth operating frequency and a second sum of
the operating frequencies of the third and fourth cores
corresponds to a second total operating frequency,
and

the first and second sums are substantially same;

waiting, by the hardware controller, a first period of time;
after the first period of time has passed:

transferring, by the hardware controller, the first thread
to the second core;

transferring, by the hardware controller, the second
thread to the first core; and

waiting, by the hardware controller, a second period of
time; and after the second period of time has passed:

transferring, by the hardware controller, the third thread
to the fourth core; and

transferring, by the hardware controller, the fourth
thread to the third core.

14. The method as recited in claim 13, wherein the first core
is arranged in communication with a first cache, the second
core is arranged in communication with a second cache and
the method further comprises, after the first period of time has
passed:

coupling, by the hardware controller, the first cache with

the second core; and

coupling, by the hardware controller, the second cache

with the first core.

15. The method as recited in claim 13, wherein after the
first core indicates that the first core has completed processing
the first thread, the method further comprises:

10

15

20

25

30

35

40

45

50

55

60

65

16

transferring, by the hardware controller, the first thread to
the second core; and
transferring, by the hardware controller, the second thread
to the first core.
16. The method as recited in claim 13, further comprising:
receiving, by the hardware controller, an instruction to
process a fifth thread;
transferring, by the hardware controller, the fifth thread to
a fifth core, wherein the fifth core has an operating
frequency less than the first and second operating fre-
quencies; and
after the first core indicates that the first core has completed
processing the first thread, transferring, by the hardware
controller, the first thread to the fifth core and transfer-
ring, by the hardware controller, the fifth thread to the
first core.
17. The method as recited in claim 13, further comprising:
receiving, by the hardware controller, an instruction to
process a fifth thread;
transferring, by the hardware controller, the fifth thread to
a fifth core, wherein the fifth core has an operating
frequency less than the first and second operating fre-
quencies; and
after the first core indicates that the first core has completed
processing the first thread:
transferring, by the hardware controller, the first thread
to the fifth core,
transferring, by the hardware controller, the fifth thread
to the first core,
waiting a period of time,
transferring the fifth thread to the second core, and
transferring the second thread to the first core.
18. A method to operate a multi-core processor, the method
comprising:
assigning, by a processor, a first core and a second core into
a first group, wherein the first core is configured to
operate at a first operating frequency and the second core
is configured to operate at a second operating frequency,
wherein a first sum of the operating frequencies of the
first and the second cores corresponds to a first total
operating frequency;
assigning, by the processor, a third core into a second
group, wherein the third core is configured to operate at
a third operating frequency, wherein at least one of the
first, second, or third operating frequencies is different
from the others of the first, second, or third operating
frequencies, wherein a second sum of operating fre-
quencies of cores in the second group corresponds to a
second total operating frequency, and the first total oper-
ating frequency is substantially same as the second total
operating frequency;
storing in a memory, by the processor, an identifier that
identifies the first group; and
storing in the memory, by the processor, an identifier that
identifies the second group,
assigning, by the processor, a first thread to the first core, a
second thread to the second core, and a third thread to the
third core; and
after a period of time, transferring the first thread to the
second core and the second thread to the first core,
wherein the first group is effective to process the first and
second threads at a substantially same rate based at least
in part on the transfer of the first thread to the second
core and the second thread to the first core.
19. The method as recited in claim 18, wherein assigning
the first core and the second core comprises determining a
distance between the first and second cores, and grouping the

US 9,047,137 B2
17

first and second cores into the first group based at least in part
on the determined distance between the first and second
cores.

20. The multi-core processor of claim 1, wherein the sec-
ond group is effective to process the third thread at the sub- 5
stantially same rate.

18

